Southwest Fisheries Center Administrative Report No. 4H, 1978 (Rev.)

AGGREGATION AND OTHER REDUCTIONS FOR SEMI-SEPARABLE

MARKOV DECISION PROCESSES: THE LINEAR CASE

Roy Mendelssohn
Southwest Fisheries Center
National Marine Fisheries Service, NOAA
Honolulu, HI 96812

February 1978

DRAFT FOR COMMENT



I. Introduction

In a series of recent papers, 1 show how a semi-separable
Markov decision process can be reduced to a problem with n constraints
(the number of states) and n lower bounds. if x € X is a state, and
y € X is a feasible decision, then a process is "gemi-separable”

(Mendelssohn 1978a)
for all x, j € X; and all y

where Pi i is the transition probability to state j. Let fO’ fl’ cees

2

fn be the optimal values of the Markov process, and let vy T fo;

v, =f.-f , ..., v._=f -f¢ . Then I show the LP that solves the
1 1 0 n n n-1

problem can be formulated as:

n
min T (n+tl-x)Vv
x
x=0
(1.1)

s.t Av > b

%

v, > b,

1= 3]

where the j+l element of b is the return from remaining in state 3,
%
bj are simply determined lower bounds, and the jth row of A is:
n n

. n . . .
l1-0, 1-a Z Pq, -, 1-a X Pq, -0 Pi, ey -opd | .
i=1 °© i=3 5 i=34 n

(see Mendelssohn 1978a for details). In Mendelssohn (1978b), I use
the structure of this reduced LP to show how to easily recover an
optimal policy from a solution to (1.1), and also to describe quali-

tative properties of an optimal policy for a wide class of semi-separable

processes.
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In this paper, I focus on a special case; where the decision

set Y(x) for each x € X is defined as:

Y(x) = {y:0<y<x} (1.2)

and the return is linear, that is:
G(x, y) =h-(x-y); h >0 (1.3)

This is an example of a separable problem considered by Denardo (1968).
However, (1.1) is a smaller problem than the equivalent problem in
Denardo; and can be used to obtain even greater reductions in problem
size.

In Mendelssohn (1978b), I show that a separable problem
satisfying (1.2) and (1.3) always has a base stock policy optimal, if
an optimal policy exists. Also, in the linear case, each b; is
identically h. the lower bounds can be removed by substituting

v,=v, T h for i=1, ..., n. Before stating theorem 1, a lemma is

needed.

Lemma 1.1 Let x be a nonnegative random variable defined on [0, bl,

——— i i

where b < ® , and F(x) its cdf. Then:

E(x) = fb [1 - F(x)] dx
o

Proof. See Karlin and Taylor (1975), p. 38.
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Theorem 1.1 Assumption (1.2) and (1.3) imply the LP given (1.1) is

equivalent to:

n
minimize I v~
x=0 =%
(1.4)
s.t. Av > b
i . . . .
where b~ = aE(s[i]) - (i+1l)h; and sli] is the transition function from
state i.
Proof. By the substitution, v, = vi + h. At i, this gives Av
and terms multiplies by h.
. i\ i i i i i
n
The inner terms are just (i+l) - o X (1—F(i» = (i+D) - aE(s[i])
i=0

by lemma 1.1.

O

P . . st .
It is interesting to note that the (i+l) RHS is greater

than the ith, if and only if:

E(s{1411) - E(s[i]) > & (1.5)
In a continuous state version, this is equivalent to:

d . 1

ai <ES(1)> 24 (1.6)
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Equality in (1.6) is the two-period base stock size. 1In
each row i of A, vi is added to the row before. The algorithm
checks that this "weighted derivative'" is greater or less than the
change in the two-period result. A related result can be found in

Mendelssohn and Sobel (1977).

II. Reducing the Size of the LP

For many problems, even (1.4) will be a very large LP.
Luckily, it is possible to greatly reduce (1.4). It is convenient
for this discussion to let b = 0, and retain the lower bounds vy > h.

Often it is known a priori that the base stock size lies
in the interval (jL, ju). This suggests it may be possible to
aggregate all the variables below jL and all the variables above ju.
Theorem 2.1 states that the variables above ju may be aggregated
without loss of optimality; the variables below jL may be aggregated
but possibly with loss of optimality. However, the base stock size

u

will still be in (37, 3%).

Aggregate variables by letting:

1 n L e i
U= ;:TEII< % (n+l-i» ;¢ = ¥ w (n+l-i)
Kk n .L jL n .L
where w = (?-—a z Pi X <}-a X pi >
i=k i=0 k=1

3
u_ 1 I
and let q = n+1(k§ ak>, 9 = %
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i, . =T L
where a, is the (i, k) element of A. Let v = (v, V. L,,s--
k i+l
and A be A with rows 1 through jL, ju+1 through nt+l eliminated;
columns 1 through jL, ju+l through n+l eliminated, and the first

T
- L u L L L L
and last columns of A are ¢ and q , where q° = (quﬁ qu+1, cens q,u)

T J J
and qu =(qu qu qu )
jL’ jL+]_’ > Rqut -
Theorem 2.1 The reduced problem:
.u
j -1
min I (n+l-i)vi + WY o+ cLVL
i=jlu v
(1.7)
s.t. Av >0
v, > h, i= 3™, ..., %1; v* > (@3%Dh; v* > GMn

has the following properties:

(1) The base stock size.E lies in (jL, ju).

(ii) There is no loss of optimality from aggregating

vju, ij+l, sees Vo

(iii) The loss of optimality from aggregating Vs Vietes VjL

is at most

max _ )t o
[i = 0,1, ...,j’{(n+1-i) - uAl}] = hn,

1-o

where u are the dual variables of the reduced problem.

Proof. A heuristic proof is offered for aggregating the upper variables,

since a rigorous proof can be derived as a special case of the lower

*
variables, which is more difficult. Since j e (j , j¥), each v,, 1 > j"

v Vu
L] ju_l,

)5

)
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must be identically h. Also, rows ju+l through n+l cannot be tight,
hence they can be eliminated. Averaging the transition is justified
in that the new process, if it goes to a state greater than ju,
immediately goes at least to ju(perhaps lower). These are the qg's.
For the lower variables, it is first necessary to show
that jL will not come out as the solution to (1.7). Suppose it does.
The proof is to show that this implies j* ¢ (jL, ju) in the original

problem. Disaggregate by letting

v T ey

i=43", ..., ntl
Then from proposition (1) in Zipkin the disaggregate solution is
feasible in (1.1), and equality must hold in row jL+l, due to how
the weights w- were chosen.

Since ij+l’ ey vn are at their lower bound and the
coefficients on them are negative in that row, it is clear that an
improved solution can only be obtained by decreasing Vor Vps oceeo

ij. This implies vj*_ is at its lower bound, which contradicts

1
%
the optimality of j .
Part (iii) is equation (4) in Zipkin (1977).
ad
Theorem 2.2 suggests a method for finding an optimal policy.
Aggregate together all variables with an index less than jL, greater

) P PR
than j , and choose a partition on the remaining states, and aggregate

up to each of those points. The following theorem shows that if the
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base stock size found from this problem is at the variable representing
the ith set of aggregated states, then the true base stock size must
lie in that partitiomn.

¥ L .u . LooLuy . .
Theorem 2.2 Assume j € (j , j ). Divide (j°, j ) into intervals

(jL, jl], <j1, jz], ey (jk, ju>. Agoregate variables VO, censy VI,

J

and vju, seey Va8 in theorem 2.1. Aggregate variables Vji’ Vji+l’

ey Vji_l similarly to Vgr e ij, where the weights yi are chosen

from row_ii as in theorem 2.1. Then

(1) An optimal base stock size for the aggregated problem

lies in (37, 3.

(ii) If jl is an optimal base stock size for the aggregate

Kk A0 i+l
problem, j € (j s J .

(iii) The error for the aggregate problem is at most

. +
<n+l—(i+j) - GA(1+3)>] }

on K max
ey
oy o Wy -5t L, s

+ h 20 ([ max (n+1-1 - uAh)
120 L

1-a

)

where u is the vector of dual variables of the aggregated problem

. LEE SN

and At is the ith column of A.

Proof. Part (iii) is again equation (4) in Zipkin (1977). If part
(i) isn't true, then either the row equivalent to staying in jL of

ju must be an equality. The contrapositive proof in this case is the

same as in theorem 2.1.
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Suppose ji is the optimal base size for the aggregate
problem. Assume j* < ji, then a similar contrapositive argument
yields that j* is not optimal in the original problem. If j*2>ji+l,
them set all the vi's, i > j+1 equal to h. Since this row is an
inequality, it must be an equality in the original row. From the
form of the disaggregated row, this can only come from changing
vqe Vs sees vji+1, so that Vj*—l = h, which contradicts the
optimality of j*.

O

An efficient search technique can now be devised. Aggregate

Yy, 1f

to jL and from ju to n+l, and some small partition of (jL, 3

the partition is 10 more variables, this implies initially an LP

that is (12x12)! Given the solution to this problem, reaggregate
.1 i+l - .

up to j~ and down to j , where j= is the base stock size from the

aggregate problem. Partition this interval as before, and repeat.

This algorithm involves solving a series of extremely small LP's.

The a posterior error as given by (iii) can be used as a stopping

rule for when it is no longer worth going further.

III. Finding the Interval (jL, ih

Consider the problem:

f(x) = max {h e (x-y) + OLE<f(S[Ya D]))}

0<y<x

where D is a random variable, and it is assumed that f(¢) and s[+, D]

are differentiable (perhaps cne-sided) and that f(+) is unimodal.
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Assumptions that are sufficient for these conditions to be valid
are given in Mendelssohn and Sobel (1977).
It is readily seen from that paper or the LP (1.1) that
£7(x) > h. In fact, £7(x) =h if x z_y*, where y* is an optimal base

stock size. Therefore, if:
h f_aE{h 's[l][y, D]} = ahE{s[l][y, D]}

the base stock size must be no greater than y. Let y* be the point
where E(s[l][y, D]) = éu Then the base stock size for the infinite
horizon problem can be no greater than y*. Let ju = y*. If

sly, D] = Ds[y], Pr{D > 0} = 1, and s[1] is continuous, it is easily
seen that if §* is the solution to s [y] = %’, then the infinite
horizon problem base stock size is less than §* if E(D) > 1, is
greater than §* if E(D) < 1, and is less than or equal to §* if

E(D) = 1.

Thus, in comparing the stochastic and deterministic problems,
if §* is the deterministic solution, the stochastic solution is more
conservative if and only if E(s[§*, Dl]) - §* is a supermartingale.
Using the deterministic solution as the base stock size is more
conservative if E(s[§*, D]) - §* is a submartingale. Unless
E(s[§*, D])38>§*, it probably will not be worth it to calculate the
stochastic optimum. Zipkin's (1977) results can be used to determine
bounds on using this policy. However, particularly in situatioms
where very low stock levels are highly undesirable, such as in

managing renewable resources, using the deterministic solution as

the base stock size to lower the risk of depletion will probably
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outweigh the loss due to this bound. I conjecture that a similar
result is valid when linear returns are combined with linear smoothing
costs.
In a future paper, these results will be used to analyze
several published models relating to managing stochastically varying

fisheries.
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